Bank oparty na AI – niedaleka przyszłość czy odległa wizja?
Jeszcze około rok temu pojęcie generatywnej sztucznej inteligencji było znane przede wszystkim inżynierom AI i analitykom danych. Dziś technologia ta wkroczyła do życia i świadomości konsumentów i stanowi awangardę rewolucji gospodarczej.
Autorzy raportu Mastercard powołują się na badania, z których wynika, że 55% ankietowanych dyrektorów generalnych dużych globalnych firm, potwierdziło, że „oceniają lub eksperymentują” z generatywną sztuczną inteligencją, a 37%, że już z niej korzysta[1].
Na razie zarówno banki, jak i inne instytucje finansowe prezentują dość konserwatywne podejście do sztucznej inteligencji. Pierwsze wdrożenia oparte na tej technologii mają charakter wewnętrzny – banki wykorzystują je głównie do wspierania własnych rozwiązań w zakresie systemów zarządzania i przeprowadzania analiz.
Wraz ze wzrostem zaufania do generatywnej AI ma ona jednak szansę stać się integralną częścią usług finansowych. Może zmienić dynamikę konkurencji w bankowości, wzmacniając pozycję nowych podmiotów wchodzących na rynek lub zmieniając rozkład sił wśród istniejących instytucji.
Dlatego właśnie Mastercard przeanalizował potencjał i wyzwania związane z wykorzystaniem sztucznej inteligencji w branży bankowej.
Czytaj także: GenAI i bezpieczeństwo w chmurze obliczeniowej
Potencjał sztucznej inteligencji w bankowości
Poniżej – obszary oraz przykłady wykorzystania sztucznej inteligencji, które prawdopodobnie pojawią się w bankowości w ciągu najbliższych pięciu do siedmiu lat.
Wiedza i analizy – bankowcy wyposażeni w sztuczną inteligencję mogą się przekonać, że wyszukiwanie informacji, które kiedyś zajmowało godziny, teraz może zająć kilka minut.
Technologia informacyjna – sztuczna inteligencja może pomóc w opracowywaniu specyfikacji projektu: pisaniu kodu czy tworzeniu syntetycznych danych, z pomocą których można przetestować nowe rozwiązania pod kątem ewentualnych oszustw i systemów oceny ryzyka. Na co dzień, inżynierowie mogą korzystać ze sztucznej inteligencji, by uzyskać wskazówki pomocne w realizacji bieżących zadań.
Cyberbezpieczeństwo i zapobieganie oszustwom – duże modele językowe (LLM) mogą być dostosowane do pracy w zakresie bezpieczeństwa. Mogłyby one m.in. reagować na zagrożenia i przekształcać złożone dane w jasne wskazówki, na podstawie których specjaliści mogliby podejmować adekwatne działania. Zdolności generatywnej AI do rozpoznawania wzorców mogą potencjalnie poprawić możliwości nadzoru starszych form tej technologii.
Zarządzanie talentami – dzięki możliwości przetwarzania nieustrukturyzowanych danych, rozwiązania oparte na sztucznej inteligencji mogą znajdować i przedstawiać menedżerom HR kandydatów, którzy mimo braku tradycyjnego wykształcenia bankowego, mogą zaoferować kompetencje cenne w pracy w danej instytucji czy na określonym stanowisku.
Wdrażanie klientów – sztuczna inteligencja może usprawnić zarządzanie dokumentacją związaną z klientami banku. Szybko syntetyzując dane, może sygnalizować potencjalne ryzyka i automatyzować formalności.
Bankowość konwersacyjna – sztuczna inteligencja może wspomóc boty, które staną się zdolne do odpowiadania na zapytania klientów w odpowiedni kontekstowo sposób. Dziś wielu klientów banku próbuje ominąć system czatu, aby dotrzeć do konsultanta – to może się w przyszłości zmienić.
Doradztwo majątkowe – rozwiązania oparte na generatywnej sztucznej inteligencji mogą zapewnić porady finansowe, które nie są obciążone emocjami lub myśleniem życzeniowym.
Udzielanie kredytów – sztuczna inteligencja może skrócić czas przetwarzania wniosków o pożyczki i zmniejszyć związane z tym koszty, oferując wnioskodawcom wskazówki konwersacyjne krok po kroku.
Programy lojalnościowe – generatywna AI daje osobom zarządzającym programami lojalnościowymi potencjalne narzędzie do komunikowania się w czasie rzeczywistym z uczestnikami programu na temat ich oczekiwań, umożliwiając lepsze dopasowanie do potrzeb konsumenta.
Marketing i komunikacja – oprócz wykorzystania generatywnej sztucznej inteligencji do tworzenia e-maili i postów w mediach społecznościowych, marketerzy mogą zyskać nowe zrozumienie reakcji konsumentów, łącząc jej możliwości w zakresie generowania treści z analizą nastrojów i trendów, które panują w mediach społecznościowych.
Czytaj także: Najważniejsze słowa 2024 roku: ekosystemy danych i sztuczna inteligencja
GenAI – minimalizowanie wyzwań
Generatywna sztuczna inteligencja niesie ze sobą także wyjątkowe wyzwania, którym banki muszą stawić czoła.
Poufność danych – aby zapewnić prywatność banki mogłyby selektywnie korzystać z modeli sztucznej inteligencji o zamkniętym i otwartym kodzie źródłowym, stosując metody samozabezpieczenia, począwszy od zapór sieciowych, przez protokoły inżynieryjne po tokenizację danych. Jeśli to możliwe, banki mogłyby również zbudować od podstaw własne LLM.
Niedokładność – generatywna AI może podlegać „przekłamaniom” i innym nieścisłościom. Sektor finansowy, podatny na negatywne informacje, musi zatem podjąć szereg środków zapobiegawczych, w tym: projektowanie, tworzenie, rozwijanie i doskonalenie zapytań kierowanych do modeli językowych SI tak, by udzielały precyzyjnych odpowiedzi, ukierunkowane dostrajanie modeli i, co najważniejsze, nadzór ludzki.
Integralność danych – banki muszą zapewnić, że przekazywane informacje są dokładne, wiarygodne i wolne od błędów lub stronniczości. Dane wyjściowe systemu algorytmicznego będą musiały być maksymalnie identyfikowalne, wyjaśnialne i godne zaufania. Bankom mogą pomóc w tym zakresie: tradycyjne praktyki zarządzania danymi, dostrajanie LLM, konsultacje z ludźmi i ciągły audyt.
Dostępność danych – bariery technologiczne w bankach mogą powodować umieszczanie danych w niedostępnych systemach i środowiskach przechowywania. Banki mogą jednak spodziewać się rozszerzonych sieci API (z ang. application programming interface, czyli zestaw reguł umożliwiających przesyłanie danych między aplikacjami) i rozwijającej się infrastruktury wtyczek (z ang. plugin, czyli element oprogramowania, który służy do rozszerzenia funkcji danej aplikacji lub systemu), które ułatwią przepływ danych.
AI w sektorze finansowym wymaga zaufania
– Generatywna sztuczna inteligencja stanie się naprawdę użyteczna tylko wtedy, gdy będziemy mogli jej zaufać, a jedynym sposobem na to, jest zastosowanie podstawowych zasad odpowiedzialności w stosunku do niej i danych wykorzystywanych do jej tworzenia.
W Mastercard modele sztucznej inteligencji stanowią podporę wielu rozwiązań, zabezpieczając co roku ponad 125 miliardów transakcji w naszej sieci. Zatrudniając setki analityków danych i inżynierów AI, angażujemy się w opracowywanie praktycznych rozwiązań w zakresie sztucznej inteligencji, które od samego początku dbają o prywatność i etykę.
We wszystkich naszych działaniach gwarantujemy, że sztuczna inteligencja jest wykorzystywana w sposób odpowiedzialny i etyczny – mówi Andrew Reiskind, Chief Data Officer z Mastercard.
Z całym raportem można zapoznać się na stronie: https://www.mastercard.com/news/insights/mastercard-signals/
***
[1] The Majority of CEOs Believe Generative AI will Increase Their Organizations’ Efficiencies: ‘Summer 2023 Fortune/Deloitte CEO Survey’