Badanie SAS: banki coraz częściej wykorzystują sztuczną inteligencję do przeciwdziałania praniu pieniędzy
1/3 organizacji z sektora finansów potwierdziło, że pandemia COVID-19 miała wpływ na przyspieszenie wdrożenia sztucznej inteligencji (AI) i uczenia maszynowego (ML) na potrzeby przeciwdziałania praniu pieniędzy (AML). Jednocześnie 39 proc. specjalistów ds. zgodności przyznaje, że projekty z tego zakresu, mimo zakłóceń spowodowanych pandemią, nie uległy spowolnieniu.
Rola sztucznej inteligencji w zwalczaniu prania pieniędzy staje się kluczowa
Raport „Acceleration Through Adversity: The State of AI and Machine Learning Adoption in Anti-Money Laundering Compliance” prezentuje wyniki badania przeprowadzonego wśród 850 członków Association of Certified Anti-Money Laundering Specialists (ACAMS), największej międzynarodowej organizacji zajmującej się rozwojem kompetencji specjalistów z zakresu wykrywania i zapobiegania przestępstwom finansowym.
ACAMS przeprowadziło wśród nich ankietę na temat wykorzystania technologii w ich organizacjach do wykrywania przypadków prania pieniędzy. Szacuje się, że proceder ten stanowi 2 ‒ 5 proc. globalnego produktu krajowego brutto, czyli od 800 mld do 2 bln USD rocznie.
Wnioski z badania i poszczególne wartości procentowe zaprezentowano na portalu.
Czytaj także: Znaczące zmiany unijnego Rozporządzenia 2015/847 w sprawie transferu środków pieniężnych, także kryptoaktywów
AI/ML w procesach AML
Rola sztucznej inteligencji w zwalczaniu prania pieniędzy staje się kluczowa. Ponad połowa respondentów (57 proc.) już wdrożyła AI/ML w procesy AML, pilotuje rozwiązania z tego zakresu lub planuje wdrożyć je w najbliższych 12 ‒ 18 miesiącach.
‒ Podmioty regulacyjne na całym świecie coraz częściej oceniają działania instytucji finansowych w obszarze compliance na podstawie wiarygodności informacji przekazywanych organom ścigania. Nie dziwi zatem fakt, że 66 proc. respondentów uważa, że organizacje sprawujące nadzór oczekują od nich wykorzystania sztucznej inteligencji i uczenia maszynowego.
Wiele podmiotów z branży finansowej coraz sprawniej wdraża zaawansowane technologie analityczne, które pomagają im w identyfikowaniu przestępców – mówi Kieran Beer, Chief Analyst and Director of Editorial Content w ACAMS.
Konieczna jest powszechna implementacja technologii, niezależnie od wielkości przedsiębiorstwa
Prym we wdrażaniu nowych technologii wiodą nie tylko największe instytucje finansowe. Już 28 proc. dużych firm z tego sektora, które posiadają kapitał większy niż 1 mld USD, określa siebie jako innowatorów, którzy szybko wdrażają technologię AI. Jednak, aż 16 proc. mniejszych firm (wycenianych poniżej 1 mld USD) również postrzega siebie w ten sposób.
Mając na uwadze, że wszystkie organizacje finansowe muszą spełniać te same wymogi regulacyjne, konieczna jest powszechna implementacja technologii, niezależnie od wielkości przedsiębiorstwa.
Czytaj także: Trzy banki w USA oskarżone o współpracę z terrorystami
Zaawansowane narzędzia analityczne
Sprostanie wyzwaniom związanym z COVID-19 oraz zapewnienie skutecznych metod przeciwdziałania procederom prania pieniędzy nie jest możliwe bez wykorzystania zaawansowanych narzędzi analitycznych.
Organizacje, które jako pierwsze wdrożyły rozwiązania AI i ML, dostrzegają znaczący wzrost wydajności, a jednocześnie łatwiej im spełnić rosnące wymogi regulacyjne
Zdaniem uczestników badania przeprowadzonego przez SAS, KPMG i ACAMS, przyczyniają się do tego również:
– możliwość poprawy jakości badania poszczególnych przypadków i spełnienia wymogów regulacyjnych (40 proc. odpowiedzi);
– możliwość ograniczenia liczby fałszywych zgłoszeń i związanych z nimi kosztów (38 proc. odpowiedzi).
‒ Radykalna zmiana zachowań konsumentów wywołana przez pandemię sprawiła, że wiele organizacji z sektora finansowego dostrzegło wady statycznych, opartych na regułach strategii, które nie gwarantują precyzji i nie zapewniają elastycznościporównywalnej do behawioralnych systemów decyzyjnych.
Sztuczna inteligencja i uczenie maszynowe są z natury dynamiczne, inteligentnie dostosowują się do zmian rynkowych i pojawiających się zagrożeń. Ponadto technologie te mogą zostać szybko zintegrowane z działającymi programami compliance.
Organizacje, które jako pierwsze wdrożyły rozwiązania AI i ML, dostrzegają znaczący wzrost wydajności, a jednocześnie łatwiej im spełnić rosnące wymogi regulacyjne – podkreśla David Stewart, Director of Financial Crimes and Compliance w SAS.
Pełna wersja raportu SAS, KPMG i ACAMS: „Acceleration through adversity: The state of AI and machine learning adoption in AML compliance”.