Technologie: Nowoczesny Fraud Management w erze Big Data Hybrydowa analityka z analizą sieci powiązań
Rosnąca skala i różnorodność nadużyć stawia przed bankami nowe wyzwania w zakresie uszczelnienia systemów bezpieczeństwa i zabezpieczenia środków finansowych klientów. Aby sprostać kolejnym zagrożeniom muszą sięgać po zaawansowane rozwiązania technologiczne do wykrywania i prewencji nadużyć.
Marcin Nadolny
Head of Fraud Intelligence SAS Institute
Wielotorowość działań oszustów w obszarze wyłudzeń kredytowych, wyłudzeń środków finansowych z rachunków klientów, fałszerstw i kradzieży tożsamości, które są realizowane nie tylko przez indywidualne osoby, ale często w ramach zorganizowanych grup, z wykorzystaniem nowoczesnych technologii i cyberprzestrzeni, wymaga skutecznych i wszechstronnych systemów ochrony. Obecnie nie wystarczą już zwykłe systemy regułowe, czarne listy, czy nawet wykorzystanie modeli predykcyjnych. Skutecznym podejściem do wykrywania złożonych i zorganizowanych działań przestępczych staje się jednoczesne wykorzystanie wielu technik analitycznych, w tym również analizy sieci powiązań. Równolegle, wraz z dynamicznym rozwojem technologii, niezbędna jest również efektywność algorytmów wspierających podejmowanie decyzji weryfikacyjnych w czasie rzeczywistym lub pod presją czasu.
Hybrydowa analityka
Nowe wyzwania wymagają kreatywnych i kompleksowych rozwiązań, takich jak hybrydowa analityka. Wiele systemów do wykrywania nadużyć (w tym nadużyć aplikacyjnych), które zostały wdrożone w bankach na początku XXI w., nie nadąża za dynamicznie zmieniającymi się trendami fraudowymi i nie zapewnia bieżącej skutecznej ochrony banku i interesów klientów. Bazują one w większości na regułach, które przestępcy mogą szybko rozpracować i obejść. Systemy te często wykorzystują również tzw czarne listy (zarówno wewnętrzne, jak i zewnętrzne). Informacje wymieniane w ten sposób pomiędzy bankami, choć nadal są bardzo przydatne w całym procesie, dotyczą jedynie znanych przypadków nadużyć, które już miały miejsce i są niewystarczające do skutecznego zabezpieczenia się przed nowymi formami ataków, pojawiającymi się z dnia na dzień. Wiele banków wykorzystuje również modele predykcyjne, które są bardziej skomplikowane i trudniejsze do obejścia. Jednak wobec rosnącej złożoności działań przestępczych i nasilenia działań zorganizowanych grup w wielu wypadkach ta metoda również nie gwarantuje pełnego bezpieczeństwa.
Aby odnieść sukces w walce z przestępcami w dobie Big Data, konieczne jest posiadanie kompleksowego systemu do realizacji szeroko zakrojonych działań antyfraudowych. Systemu, który zapewnia holistyczny obraz (cross-kanałowy i cross-produktowy) i dostarcza pełną wiedzę o klientach, pracownikach i ich działaniach oraz wykorzystuje hybrydową analitykę do eksploracji ogromnych ilości danych gromadzonych przez bank każdego dnia.
W ramach hybrydowego podejścia wykorzystywanych jest jednocześnie wiele metod analitycznych – zarówno analiza sieci powiązań, reguły biznesowe, jak i zaawansowane modele predykcyjne i technologia text mining. Łącząc te elementy w różnych kombinacjach, bank jest w stanie znacznie zwiększyć skuteczność procesu wykrywania nadużyć
[...
Artykuł jest płatny. Aby uzyskać dostęp można:
- zalogować się na swoje konto, jeśli wcześniej dokonano zakupu (w tym prenumeraty),
- wykupić dostęp do pojedynczego artykułu: SMS, cena 5 zł netto (6,15 zł brutto) - kup artykuł
- wykupić dostęp do całego wydania pisma, w którym jest ten artykuł: SMS, cena 19 zł netto (23,37 zł brutto) - kup całe wydanie,
- zaprenumerować pismo, aby uzyskać dostęp do wydań bieżących i wszystkich archiwalnych: wejdź na BANK.pl/sklep.
Uwaga:
- zalogowanym użytkownikom, podczas wpisywania kodu, zakup zostanie przypisany i zapamiętany do wykorzystania w przyszłości,
- wpisanie kodu bez zalogowania spowoduje przyznanie uprawnień dostępu do artykułu/wydania na 24 godziny (lub krócej w przypadku wyczyszczenia plików Cookies).
Komunikat dla uczestników Programu Wiedza online:
- bezpłatny dostęp do artykułu wymaga zalogowania się na konto typu BANKOWIEC, STUDENT lub NAUCZYCIEL AKADEMICKI